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Abstract The local quadratic convergence of the Gauss-Newton method for convex composite optimizations is
established for any convex function with a minima set. This work extends Burke and Ferris’ results when this minima set

is a set of weak sharp minima for the convex function.
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The famous Gauss-Newton method, which was proposed to find the least-squares solutions of
nonlinear equations by Gauss in the early nineteenth century, is now extended to solve the following

convex composite optimization :
(P) minf(x) : = h(F(x)),

where h: R™ R is convex and F: R"— R™ continuously differentiable. This problem has recently
received a great deal of attention ( see, for example, ref. [1] and the references therein), and is jus-
tifiable since many class of problems in optimization theory can be cast within its framework, e.g.,
convex inclusion, minimax problems, penalization methods and goal programming. Moreover, this
method provides a unifying framework for the development and analysis of algorithmic solution tech-

niques.

In 1985, Womersleym proved the local quadratic convergence of Gauss-Newton methods under
the assumption of strong uniqueness, extending the work of Jittorntrum and Osborne'®! for the case
where h is a norm. However, Womersley s assumption just ensures the Gauss-Newton sequence con-
verges to a local minimum of ( P). Recently, Burke and Ferris''! have made a great progress in the
study of convergence of Gauss-Newton methods. An important distinction from Womersley’ s work is
that they do not require the minima set for & be a singleton or even a bounded set. Their researcl: is

based on two assumptions:

(i) the set of minima for the function h; denoted by C, is a weak sharp minima for A ; that is,
there is A >0 such that h(y)= h,;, + Ad(y, C) holds ¥ y € R™, where h,;, = min_h ( y ) while

min
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d(y, C) denotes the distance from x to the set C;

(ii) there is a regular point x € R" for the inclusion
F(z) € C; (1)
that is,
ker(F' (%)) N I'c(F(%)) = {ol,
where the set-valued mapping I'¢c: R"— R™ is given by
I'e(y) = (cone(C - ¥))* = {x" € R":(x",5) <1, Vx € cone(C - y)}, Vy € R™.

Under the above assumptions, they established the local quadratic convergence of the Gauss-Newton
sequence. Based on the work of Burke and Ferris, we continue our investigation in this direction. It
is unexpected that we find the local quadratic convergence of this method to be independent of the oth-
er properties of the convex function h . Our purpose is to relax the weak sharp minima assumption for
h and establish the quadratic convergence of the Gauss-Newton method. In addition, we will propose

a relaxation version of the Gauss-Newton method and give the superlinear convergence of this method.
1 Gauss-Newton method and its convergence

For A>0 and x € R™, let D,{x) represent the set of solutiohs to the minimization problem
minih(F(x) + FF(x)d): [ d | < A}. (2)

Thus the basic algorithm considered in ref. [1] is as follows.

Algorithm 1. Let =1, A€ (0, + w ] and 2°€ R" be given. For k=1,2,", having %k,

we determine x**! as follows.

\ I R(F(%*)) =min{lh(F(«*) + F'(«*)d): || d | <A}, then stop; otherwise, choose
d* € Dy(x*) to satisfy || d* | <9d(0,D,(5*)), and set x**' = »* + d*.

Let B denote the closed ball in R™ or R". It is helpful to recall the result due to Burke and Fer-

ris in ref. [1] before giving our theorems.

Theorem BF!'!. _Let x< R" be a regular point of inclusion (1) where C is a set of weak sharp
minima for k. Let 0< & <A, which exists from Proposition 3.3 of ref. (1] such that

d(0,D,(%)) < Bd(F(x),C) and {d € R": | d || < A, F(x) + FF(x)d € C} = ¢

(3)

hold on % + 6B Jor some 8. Assume that F' is Lipschitz continuous on ¥ + 8B with Lipschitz constant L

and h is Lipschitz continuous on F(x + EB) + (1/8) LB with Lipschitz constant M. If there is > 0
such that
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(i) 6 < min{g/Z,l} ,
(ii) d(F(%),C)<8/(29pB) and
(iii) 0 := 17LM3B/A <1,

then there is a neighborhood M(%) of x such that the sequence |x*} generated by Algorithm 1 with
initial point in M (%) converges at a quadratic rate to some x* with F(x" )€ C, thenx”™ is an opti-
mal solution of (P).

It should be noted that the weak sharp minima assumption for A is a very strong assumption. In
fact, for any convex function f on R™, the function A(y) = (f(y) = fon)® on R™ with s > 1 does
not have a set of weak sharp minima. Another important class for which there is no set of weak sharp
minima is the class of Gateaux differentiable convex functions. Therefore, it is very interesting to re-
lax the weak sharp minima assumption in Theorem BF. We have

Theorem 1. Let x € R" be a regular point of inclusion (1) where C is a minima set for h. Let

0< 8 < A such that (3) holds on % + 6B. Assume that F' is Lipschitz continuous on % + 8B with Lip-
schitz constant L. If there is 8 >0 such that -

(i) & <min{8/2,1},
(ii) d(F(x),€) <8/(29B) and
(iii) 7B <2,

then there is a neighborhood M (x) of x such that the sequence {x*| generated by Algorithm 1 with
initial point in M(x) converges at a quadratic rate to some x * with F(x* )€ C, then x" is an opti-
mal solution of (P).

2 Relaxation of the Gauss-Newton method and its convergence

Considering the background of the numerical computation, the following relaxation algorithm and
the convergence result are of practical importance.

Let D% (%) represent the set of all d € R” satisfying || d || <A and
R(F(x*) + F'(£¥)d) < minth(F(«*) + F(«F)d): [ d Il < Al + || 4% °.

Relaxation Algorithm 2. Let =1, a>1, AC(0, + w], x%€CR and d"'ER*, d" '

k+1

0 be given. For k=1,2,:*, having x*, we determine x**' as follows.

Hh(F(s*) <minth(F(a*) + FF(&*)d): 1 d |l <Al + | &1 e, take d* =
| d*=1 1|l d*~'; otherwise, choose df € D4 (x*) to satisfy | d* || < 7d (0, Di(x*)), and set
= ok g gk,

Theorem 2 Let x € R" be a regular point of inclusion (1) where C is a set of weak sharp mini-

ma for h. Let 0< 8 <A such that (3) holds on x + 8B. Assume that F' is Lipschitz continuous on x
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+ OB with Lipschitz constant L. If there is 6 >0 such that

(i) 8 <min{d/(c+1),1},
(ii) d(F(x), €)<8/(29pB) and

(iii) pLop/2+ B0 '/a <1, .

where p = min{2,v/a}, and ¢ = E (1/2)’;, then there is a neighborhood M(x) of x such that the

i=0
sequence T generated by Relaxation Algorithm 2 with initial point in M(x) and Nd'| <672
converges at a rate of p degree to some x* with F(x” )€ C, then x ™ is an optimal solution of (P).

Remark. Comparing Theorem 1 with Theorem 2, we note that Theorem 2 requires C be a set
of weak sharp minima for % . It is not surprising, since in Relaxation Algorithm 2 the correction term
d* is an approximating solution to problem (2) such that the approximation error of the function value

is controlled within a suitable bound. Thus it is closely related to the extent of the sharpness of A .
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